THE SYNTHESIS OF ORTHO-ISOPENTENYL PHENOLS

A.J. Birch and Myint Maung

Department of Chemistry, University of Manchester

(Received 26 May 1967)

Some natural products contain o-isopentenylphenol groups, the synthetic methods for which are unsatisfactory except with some polyhydric phenols.¹ We have investigated new syntheses, particularly with a view to preparing (6) required as a biosynthetic intermediate. Appropriate chromenes and dihydrofuranobenzenes can be made by standard methods and should undergo ring-fission by metal-ammonia reduction to the desired grouping.

Compounds (1; R = OAc or Cl), both obtained from (1; R = OH) itself ultimately derived from coumarin, on reduction with Li in ammonia gave (2). The chromene (3) also derived from coumarin² also produced (2), the properties of which agree with those reported³ and expected. In particular the p.m.r. spectrum accords with the structure: τ (CDCl₃) 8.29d (6H, J 1.3 c. p. s.) CMe₂; 6.70d (2H, J 7.5 c. p. s.) ArCH₂; 4.72m (1H) CH=C; 4.68s (1H) OH, removed by D₂O; 2.9-3.4m (4H) ArH. The 3,5-dinitrobenzoate had m. p. 85^o

The action of 3, 3-dimethylacrylyl chloride and aluminium chloride on ethyl <u>p</u>-hydroxyphenylacetate gave after hydrolysis (4), reduced and dehydrated to (5), m. p. 93-95°, the spectra of which accord with the structure, e.g. τ 8.61 (6H) CMe₂, 4.43d (1H, J 10 c.p.s.) (C=CH); 3.72d (1H, J 10 c.p.s.) ArCH=C. Lithium-ammonia reduction of (5) gave the desired (6), m/e 220, C₁₃H₁₆O₃, with appropriate spectra.

Dimethylchromene and related cyclic ethers, when found in natural products probably represent oxidation products of an initial o-isopentenylphenol, e.g.⁴ An efficient method of reconversion into hypothetical precursors would therefore be useful in biosynthetic investigations. Robustic acid (7) was reduced with sodium (2 equivalents) in liquid ammonia to (8; R = Me) m. p. $200-207^{\circ}$, $C_{22}H_{22}O_{6}$, τ (acetone - d_{6}): 8.29d (6H, J 6 c. p. s.) CMe₂; 6.66d (2H, J 6.7 c. p. s.) ArCH₂; 6.26s (3H) 4¹ - OMe; 6.06s (3H) 5 - OMe; 4.8m (1H) CH=C; 3.38s (1H) H - 8; 3.19d and 2.64d (4H, J 8.3 c. p. s.) H - 2¹, 3¹, 5¹, 6¹. The use of more metal and a longer time gave (8; R = H) m. p. 186-188[°], m/e 368, with appropriate spectra.

Scandenin can be similarly reduced and further results will be reported elsewhere with Dr.A. Pelter.

Acknowledgements

We are indebted to Dr.A. Pelter for gifts of materials and to the Colombo Plan Fund for a Scholarship (to M.M.).

References

- 1. W. D. Ollis and I. O. Sutherland, "Recent Developments in the Chemistry of Natural Phenolic Compounds", Ed. by W. D. Ollis, Pergamon Press, London 1961, p. 107.
- 2. L.I. Smith and P. M. Rnoff, J. Amer. Chem. Soc., 62, 145 (1940).
- 3. A.R. Bader and W.C. Bean, J. Amer. Chem. Soc., 80, 3073 (1958).
- 4. J.H.Rickards and J.B.Hendrickson, "The Biosynthesis of Steroids, Terpenes and Acetogenins", Benjamin, New York 1964, p. 110.